Making Main Street: A Downtown for Holbrook

April 2019

Regional Plan Association

Suffolk County Industrial Development Agency
Acknowledgments

Suffolk County Industrial Development Agency
The mission of the Suffolk County Industrial Development Agency (IDA) is to promote the economic welfare, employment opportunities and quality of life of the residents of Suffolk County. The IDA takes a holistic approach to fulfilling this mission, offering not just tax incentives to companies looking to grow in the County, but thought leadership and technical assistance opportunities that can spur economic development on a broader scale.

Consistent with this mission the IDA has previously commissioned six downtown, corridor, and economic opportunity analyses for areas within the County, after engaging in a contract with the Regional Plan Association. The analyses were delivered in early 2017. A comprehensive review of the outcomes of the various analyses, along with lessons learned, arrived in late 2017.

This report continues this leadership effort for the hamlet of Holbrook. Holbrook is proximate to and on the precipice of significant economic development initiatives, and poised to benefit from the planned Nicolls Road Bus Rapid Transit route and the linkage it will create to the Suffolk County Innovation Zone and the wider Connect Long Island plan for Suffolk County.

There is an opportunity to leverage all of these investments toward the enhancement and vibrancy of downtown Holbrook by establishing a vision for downtown and its potential future revitalization. Further, this is an opportunity to diversify the County’s housing stock and provide affordable options for Long Islanders. In particular, Long Island faces a challenge in providing housing options for its younger residents, many of which decide to leave to other states and not return. It will take the creation of vibrant, affordable, and exciting opportunities to encourage them to return, launch their careers and make a home here.
A Vision for a Holbrook Downtown

Imagine....

- Strolling down attractive sidewalks where people are dining at café tables.
- Visiting your parents who live in a second or third floor apartment because they wanted to downsize; or your newly married children who wanted to stay in town but are not ready to take on a mortgage.
- Seeing a performance at community theater space or just lounging outside in a new park.
- Catching a bus to the Ronkonkoma train station.

This report tries to capture that vision and explain what it might look like. The buildings and public spaces shown here are not real proposals. They are just sketches. But the sketches help us understand what we will have to do to achieve this vision and to identify the questions that we will have to answer before moving forward:

- What are the traffic impacts of this kind of redevelopment?
- What are the fiscal impacts on the towns?
- How would a new Downtown Holbrook relate to the still-evolving plans for the Ronkonkoma Hub?

There is a lot of work ahead: technical studies around traffic and sewer capacity; careful consideration of zoning changes and design guidelines; and more community engagement.

But if we don’t act, many landowners and businesses owners will stop investing in their properties and residents will be left with just another struggling commercial strip.

The residents of Holbrook deserve better.

This report points the way forward.
Overview

Holbrook Main Street today

Holbrook Main Street is, by most accounts, doing well. At a time when brick-and-mortar retail is suffering, this corridor has few vacancies and there are many attractive sections and successful area destinations, including the Villa Lombardi’s catering hall at the southeast end of the corridor and Giunta’s Meat Farms to the northwest. But citizen stakeholders recognize that there is a lot of unrealized potential here.

The Main Street corridor and the eastern portion of Union Avenue in the study area is more of a commercial strip than a true “main street”. It has a familiar set of issues that are characteristic of these kinds of commercial corridors:

- Redundant and excessively wide driveways that create unsafe conditions for pedestrians and bicyclists and friction on the route as cars enter and leave the businesses.
- Lack of pedestrian connections from the corridor to the front doors of the businesses.
- Lack of pedestrian and auto connections between adjacent businesses on the corridor, creating additional friction as cars enter onto or turn off Main Street.
- Inconsistent and suboptimal placement of buildings relative to the road and to each other.
- Inadequate buffering between the corridor and residential neighborhoods beyond.
- Lack of connectivity to neighborhoods and destinations off the corridor.
- Irregular sites and disparate ownership patterns.
- Marginal commercial uses

Design guidelines can address the relatively inexpensive street and sidewalk infrastructure issues. The bigger challenge is the lack of identity – the lack of a sense that this place is a unique part of Holbrook and not just Anywhere USA. Holbrook can achieve this sense of place by replacing low density commercial properties with mixed-use buildings that are oriented towards public spaces and enable downtown living. This is not only an economic development strategy, but a quality of life opportunity for all residents of Holbrook.

It is important to note that this is not a development proposal. It is impossible to know how much development Holbrook will attract over the next twenty years or how it will be configured. There are also numerous technical studies that this report points to that will need to be done for things like fiscal and traffic impacts. Still, this kind of architectural build-out study is useful in other ways: it can be used to derive order-of-magnitude quantities for sewer demand; it can be used for traffic studies; and here it is used for deriving the design guidelines and zoning regulations that would enable the kind of massing and building placement shown in the plan and in the digital models. Most importantly, it is important to present some kind of vision to frame the ongoing discussions that will need to take place with citizen stakeholders, property and business owners, elected officials, agency representatives and others.
A Strategic location

Holbrook is a hamlet and census-designated place in Suffolk County, New York. According to the most recent US Census data, it has a population of over 26,000.\(^1\) The community borders MacArthur Airport to the west and County Route 97 (Nicolls Road) to the east. A fraction of the hamlet stretches further north to County Route 16 (Portion Road). Holbrook’s commercial corridor (study area) stretches across Main Street between Broadway and Union Avenue. The section is fragmented by the Long Island Railroad (LIRR) tracks, which follow the municipal boundaries. The Town of Islip is southeast of the tracks and the Town of Brookhaven is located to the north.

The study area is located only a mile away from the Ronkonkoma Hub, a mixed-use transit oriented development (TOD) around the Ronkonkoma LIRR station. Current planning efforts aim to transform the surrounding areas of this station into a mixed-use, multi-modal destination.

The Ronkonkoma Hub is currently completing construction of Phase 1 of the project consisting of 477,000 square feet residential apartments. The remaining phases are expected to be done within five to seven years, totaling 1,450 apartments. Ronkonkoma Hub South is less than a half a mile from the section currently under construction, and will be located at parcels along the LIRR tracks and Ocean Avenue. This Phase is still in the planning stages and is yet to receive municipal approvals. Initial proposal calls for a 8,000 - 17,000 arena/convention center, and 450,000 sq ft of retail/office and entertainment space. Comprehensive traffic studies for the area by Cameron Engineering are underway.

The location of the study area and the Ronkonkoma Hub also are supported by the sewer feasibility study conducted in 2015. The study evaluated the potential creation of a sewer district along a one-mile section of the commercial strip. Specifically, the study assessed the option of accessing the Ronkonkoma Hub’s Pump Station via a force main that would transfer wastewater to the County’s regional wastewater treatment plan Bergen Point. The study concluded that there are no technical issues that would preclude the installation of the sewer infrastructure, although a funding source would be needed.\(^2\)

The study area is also located in the center of the Suffolk County Innovation Zone, a coordinated economic development area linking the knowledge centers of Brookhaven National Laboratory and Stony Brook University and Hospital with the bustling downtown of Patchogue and the transformative development of the Ronkonkoma Hub. The proposed Nicolls Road Bus Rapid Transit route would integrate the study area with the Innovation Zone, and provide access to all three branches of the Long Island Railroad in Suffolk County.

Proximity to the Innovation Zone and the economic boost that would result presents the opportunity to address urban design issues affecting Holbrook’s corridor to rethink the commercial strip as a true “main street”.

1. 2013–2017 American Community Survey 5-Year Estimates, United States Census Bureau

It Has Been Done: Precedents For Remaking Corridors

Both nationally and regionally, there is a growing body of experience with retrofitting these kinds of corridors as communities have come to embrace mixed-use and place-making as an antidote to car oriented sprawl.

Route 347, Smithtown NY
On Long Island, one of NYSDOT’s largest corridor re-design efforts has taken place along NY Route 347. Route 347 is approximately 15 miles long and starts near the end of the Northern State Parkway in the Town of Smithtown, runs along the northern border of the Town of Islip, and ends at the intersection with Route 25A in the Town of Brookhaven. This ongoing project, called NY Route 347 Safety, Mobility and Environmental Improvements Project, includes a series of projects which address roadway, pedestrian, bicycle, and transit improvements around a vision of a green corridor. The Vision Plan for a Green Route 347 calls for the development of a shared-use path which is designed to have a varying relationship with the changing land use along the corridor. Green gateways along the corridor signal users as they enter new areas and green stops along the shared-use path link pedestrians and bicyclists with businesses and communities off the corridor. Additional project elements consider the protection and improvement of wildlife habitat and water quality along the corridor.

Livingston Town Center, Livingston NJ
Livingston’s business district used to stretch along a 3-mile span with no downtown, pedestrian traffic or community focal point - it was in essence the all-too-common commercial strip. The desire for a town center came out of a community visioning process, with a deteriorating shopping plaza envisioned as a new town center. In 2000 local officials declared the plaza site an area in need of redevelopment and in 2002 reached an agreement with the site’s owners for a redevelopment plan. The project size increased in scope beyond the plaza to include surrounding undeveloped lands. The final mixed-use project contains 2-to-4-story red brick buildings matching the township’s Federal-style municipal building. To address neighbors’ concerns about increased traffic, developers undertook traffic mitigation measures.

Excelsior and Grand, St Louis Park, MN
This new town center was created along a wide, high-volume road lined with strip-retail uses. The retail uses were replaced by mixed-use buildings that defined the space of the street as well as a new public space that links to places beyond the corridor. The roadway continues to be a high volume road, but the lanes were narrowed and rationalized, and traffic-calming measures, including on-street parallel parking, were introduced to create a pedestrian experience. Retail space was placed along the sections where substantial drive-by traffic was already happening. The main thorough fare was designed to be the focal point for pedestrian traffic and signalized access for automobiles was introduced.
A Vision for the Future

The design study shown here for Holbrook is speculative - it is impossible to know how Holbrook will develop over the next twenty years. But it is important to provide a vision to frame the ongoing and future discussions with citizen stakeholders, property and business owners, elected officials, agency representatives and others. This kind of architectural build-out study is useful in other ways: to derive order-of-magnitude quantities for sewer demand; to inform traffic studies; and to produce design guidelines and zoning regulations to enable the kind of massing and building placement shown in the plan and in the digital models.

Potential assemblages and redevelopment sites

Many of the underutilized sites along the corridor currently are too small and irregular to accommodate any significant redevelopment. For the purposes of this study, assumptions are made about ways in which these sites could be assembled. As with the overall design, it is difficult to predict whether these assemblages would take place. The assemblages were reviewed with stakeholders familiar with property ownership and real estate conditions along the corridor that found the assemblage assumptions credible.

This study assumes that 14 assemblage sites could be created by combining anywhere from two to five lots at a time. As shown in table 1, each assemblage has been labeled with a letter between A and O. The total area of these sites is 1.4 million square feet. Based on existing building footprints and number of floors, RPA estimated the built area at 173,000 square feet, resulting in an average density of 0.1 Floor Area Ratio (FAR).

<table>
<thead>
<tr>
<th>Assembly Sites</th>
<th>Lot Area in SF</th>
<th>Approximate FAR</th>
<th>Estimated Built Area (SF)</th>
<th>Assembled Lots</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B</td>
<td>67,483</td>
<td>0.1</td>
<td>7,536</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>38,564</td>
<td>0.1</td>
<td>4,796</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>55,350</td>
<td>0.2</td>
<td>13,000</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>92,221</td>
<td>0.1</td>
<td>12,700</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>36,905</td>
<td>0.1</td>
<td>3,778</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>105,494</td>
<td>0.2</td>
<td>22,471</td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td>98,334</td>
<td>0.2</td>
<td>20,453</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>101,654</td>
<td>0.1</td>
<td>10,060</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>134,051</td>
<td>0.1</td>
<td>7,848</td>
<td>2</td>
</tr>
<tr>
<td>K</td>
<td>166,815</td>
<td>0.1</td>
<td>22,350</td>
<td>5</td>
</tr>
<tr>
<td>L</td>
<td>120,157</td>
<td>0.1</td>
<td>16,001</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>157,443</td>
<td>0.1</td>
<td>15,254</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>62,837</td>
<td>0.1</td>
<td>5,358</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td>163,062</td>
<td>0.1</td>
<td>11,096</td>
<td>2</td>
</tr>
</tbody>
</table>

3 Assemble sites A and B are shown as a single development site based on the proposed intervention at Main Street and Union Avenue intersection.
Design a Main Street

The next step was to imagine how these sites might be redeveloped, in terms of land uses, building massing, and site planning. A three-dimensional digital model was developed to represent the massing. The build out and massing studies were guided by a common set of principles, which are then used to derive both the zoning recommendations and the design guidelines.

In terms of land use, the design anticipates the kind of broader mix of uses found along a traditional downtown main street. In addition to conventional retail, there would be specialty destination retail, business services and institutional activities. Where the buildings front onto sidewalks, only active uses would be permitted to support the new street life. Most importantly, there would be apartments in the downtown, sometimes in purely residential buildings but more typically in the upper stories of mixed-use buildings.

The residential component of the land use mix is essential to create the kind of “feet on the street” that is associated with a vibrant downtown. It also provides more housing choice for Holbrook residents, whether it is older people who are looking to downsize from their empty nests or their children who are just starting families and would like to not be priced out of Holbrook. Several stakeholders also expressed the need and benefits of supportive housing.

In terms of building massing and site planning, this study envisions multi-story mixed-use buildings that are placed consistently along the back of the sidewalk, so that the Main Street corridor can become a well-designed roadway and a well-defined public space. Zoning and design guidelines will require that most of the frontage of the buildings be located at the sidewalk line. This will prevent the kinds of gaps in the street wall that compromise the sense of a Main Street as a well-defined space. The requirement to place the buildings along a setback line will create a uniform sidewalk width. By aligning the buildings between sites along the corridor, Main Street can have the kind of cohesion that is missing now.

Buildings would be 3 stories or 4 stories with the 4th story set back to maintain the small-town scale of Holbrook. Publicly accessible ground floor uses will assure active street life. Parking is located behind the buildings so that surface parking lots or gaps in the street wall do not interrupt the sidewalk experience. In some cases, structured parking is anticipated. In these cases, the mixed-use buildings are wrapped around the parking so that the parking does not face the sidewalks.

Some sites are deep enough to accommodate both mixed-use buildings facing Main Street and smaller-scale purely residential buildings behind.

The enhancements of the public realm will also be very important. Potential improvements related to the public realm, including sidewalks, pedestrian crossings, and location of electric utility lines, among others, will play an important role in providing the desirable pedestrian experience needed for the corridor. Implementing such improvements should not be limited to Main Street. Roads that feed the corridor, such as Grundy Avenue, Coates Avenue, and Furrows Road should be considered as well. Conforming to the general design guidelines listed in section D of this report will help ensure right of way that is safe for pedestrians and aesthetically pleasing.
Holbrook Corridor
Existing Conditions

Holbrook Corridor
Potential Build Out

North Gateway
Proposed park
Guinta’s

Mid-Corridor
Villa Lombardi

South Gateway
Seneca Middle School
The North Gateway: The Main Street and Union Avenue intersection

At the northwest end of the Main Street corridor is the intersection with Union Avenue. This end of the corridor is extremely important as travel branches out from here west towards the Ronkonkoma Hub, a mere mile away. It is an important gateway for the proposed Nicolls Road bus rapid transit route, which traverses the entire study area along Union Avenue and Main Street. The current proposal situates a downtown Holbrook station at the intersection of Furrows Road and Main Street. Additionally, it is a critical junction for the proposed hike-bike trail parallel to the Nicolls Road BRT, as the trail enters the study area from Holbrook Road, and then continues southeast along Patchogue-Holbrook Road.

In addition to Union Avenue, there are two other connections at this end of Main Street: Railroad Avenue, and a proposed multi-modal greenway parallel to the north side of the tracks. These are both shown in the illustrative plan. The town is also planning a new park at the site of the former Union Avenue Elementary School. This design study incorporated the current park design with a few minor modifications to integrate the park design with the proposed alternatives for this end of the corridor. However, reaching the new park from Main Street will be challenging for any pedestrian, as the current state for crossing Union Avenue is uninviting and unsafe.

In fact, the condition of this end of the corridor undermines this critical location as the northwest anchor, the gateway to Main Street, the link to the Ronkonkoma HUB, and critical transit connections at the Ronkonkoma LIRR station via bike, bus, and bus rapid transit. It fails to identify the community of Holbrook in any discernible fashion. It is a sea of asphalt where traffic and pedestrians conflict, and the site of several unattractive and marginal commercial uses. The conflicts between pedestrians and traffic worsen due to the “bowtie” geometry of the intersection of Union Avenue and the Patchogue-Holbrook Road as well as poorly defined crosswalks.

In this study, we offer three alternatives. The first and simplest option would leave the existing rights-of-way largely in their same alignments. But a variety of improvements would rationalize traffic movement and favor pedestrians. First, small traffic islands created to facilitate low-volume right turns are rejoined with the adjacent blocks. This creates more room for pedestrians and larger sites for development. Second, lane widths are reduced to 11 feet. This makes it possible to reduce crossing distances and, at Union Avenue, create a wide and well-designed refuge island at the midway crossing point. In this case, mixed-use development is suggested for Assembly Site A, while Assembly Site B hosts a mixed-use building with a civic use of some kind that would be designed to terminate the Main Street view corridor.

Another study (shown as Alternative A above) suggests replacing the wide bowtie-shaped crossing of Union Avenue and County Route 19 with a “double roundabout” - two roundabouts in series. The first roundabout reconciles the turning movements associated with the confluence of Main Street, Union Avenue and County Route 19. The second roundabout reconciles the confluence of Union Avenue and County Route 19. It is possible to construct both roundabouts almost entirely within the public right-of-way of Union Avenue and County Route 19. In this design study, development of two of the site assemblies (Sites A and B) is coordinate to create two higher-value sites for mixed-use development. In Site B, the plan suggests some kind of institutional destination (rendered in blue) - perhaps a performance venue or some other civic use - that would be built in partnership with the private development on that site. This
part of the building would provide a terminus to the view down Main Street, cementing this as the gateway to downtown Holbrook. In addition, by turning Main Street up to the first roundabout, it is possible to create another public space at this gateway. Instead of trying to dodge traffic on the way to the new park, there would be a sequence of linked open spaces.

Roundabouts and double roundabouts have been successfully deployed in other areas. The most relevant precedent is the design for the “Five Corners” section of Rotterdam in upstate New York (the designer, Georges Jaquemart, was advisor to RPA for this project). There was concern expressed about the necessary turning radius for large trucks and the “learning curve” that it would take for residents to get used to this new configuration, though where roundabouts have been implemented, safety has improved, such as the below example in Huntington, NY.

A third option (shown as Alternative B) would have a new bridge installed for County Route 19 crossing over Union Avenue, with the increasing grade, starting approximately 100 feet south of the intersection with Main Street. The elevated roadway would continue to a point where it would pick up the existing surface and elevation for the LIRR overpass. In addition, this alternative would straighten the turn from County Route 19 onto Main Street for a smoother transition between the two. Traffic would no longer be allowed to access northbound County Route 19 from Main Street, thus eliminating the traffic light at this location. Eastbound traffic from Union Avenue would access southbound County Route 19 via a ramp that would come up in the median. On the other hand, eastbound Avenue traffic would access northbound County Route 19 at a new traffic light intersection just east of the bridge. The same intersection would allow northbound traffic onto Holbrook Road, which would have to be re-opened at the intersection with Union Avenue. Finally, northbound traffic from County Route 19 will access both east and west bound Union Avenue by opening the existing median for traffic. A “STOP” sign on the exit ramp should be all that is needed as the new traffic light on Union would clear traffic for crossing Union Avenue eastbound or making a left turn to head west.

As suggested above, all of these alternatives are conceptual. They will require further deliberation with the community and a comprehensive traffic study that considers all of the suggested changes to the roadways in the study area as well as the impacts of the Ronkonkoma Hub.
North Gateway Before and After, Photo-Simulation facing Northeast from Main Street and Railroad
Maintaining the scale and character of the surrounding single-family neighborhoods is paramount. The development along the west side of Main Street backs up only onto Route 19/Patchogue-Holbrook Road. On the east side of Main Street, there are only three potential sites that abut residential properties. In these locations, the impact of any future development will be mitigated by the corridor design guidelines that call for most of the development to be along the corridor, away from the residential areas. In the few places where some additional development is at the back of the site, this development would be residential in scale, such as town houses. In all cases, the design guidelines can include a sky exposure plan that ensures that buildings are below the sight-line from the back yards of the adjacent neighborhoods.
Mid-Corridor Before and After, Photo-Simulation facing Northeast from Main Street and Furrows Road
The South Gateway: The Seneca Middle School

If one end of the Main Street corridor is anchored by the redesigned gateway at Union Avenue, it is anchored at the other end by the Seneca Middle School site. This site is surrounded to the south and to the west by compact walkable single-family neighborhoods. There are several streets from these neighborhoods that dead end at the school property but which still provide pedestrian access into the school site. For this reason, the school site can act as the bridge between these neighborhoods and the reinvented Main Street. Good pedestrian connections would facilitate biking and walking to this end of Main Street, further enlivening it and reducing car traffic.

At the moment, the school does not have much of a presence on Main Street. But some relatively small interventions such as better sidewalks and landscaping connecting the school entry and making it more visible could help this site function as the eastern anchor. The school has an auditorium with its own entry separate from the rest of the school building so it would be possible to host events after school hours, further reinforcing the role of the school as an anchor and signifying this eastern gateway.

Due to the dramatic enrollment decline in Sachem’s School District, it is possible that the existing Seneca Middle School may be considered for closure within the next 3-5 years. While the school was not included in the illustrative plan as a redevelopment site, it is a large site than can accommodate significant amounts of development perhaps including some mix of civic uses and intergenerational housing.

Finally, as shown in the illustrative plan, this Southeastern gateway would be further anchored by several redevelopment sites opposite the school and along the north end of Broadway Avenue.

South Gateway: Illustrative Plan

- New corridor development
- New frontage design
- School auditorium
- Enhanced pedestrian connections
Development Projections and Programming

As stated in the previous sections, this report is not a development proposal. Rather, we have modeled future buildout to help shape future zoning and technical studies. Based on the buildout and 3D model, RPA estimates that if all the assembly sites are to be developed—which is not likely to happen except in the very long term—this could generate over one million square feet of built area, a six-fold increase when compared to existing conditions. Based on the speculative design, the average density of the assembly sites would be 0.8 FAR. In addition, RPA conducted a comparative analysis to evaluate development scenarios for the assembly sites under different zoning conditions. Chart 1 shows the maximum achievable floor area under the existing underlying zoning against the assumptions made by the sewer feasibility study using hypothetical zoning regulations. The comparison shows that in order to achieve the necessary density for a vibrant downtown “main street,” development should double from what is allowed under current zoning rules and increase by approximately 60% more when compared to the zoning assumptions used by the sewer study.

Chart 1: Total Floor Area from Assembly Sites by Scenario in Square Feet

As described in the previous sections, the proposed programming mix should have a very robust residential component, as it would be essential to create the kind of “feet on the street” that we associate with a vibrant downtown. Chart 2 illustrates the overall programming mix of potential development on the assembly sites. As noted, residential uses represent the highest percentage with almost 60% of floor area. This is followed by retail and commercial uses with 14% each. Finally, community facilities represent 5% and parking decks approximately 10% of the total.

Current parking requirements are also very restrictive. When applying existing criterion to the potential assembly sites studied by RPA, we found that almost 5,000 parking spaces would be required under the existing zoning, while 9,000 parking spaces would be required under the zoning assumptions used in the sewer study.

In order to achieve a vibrant downtown environment, the town should consider relaxing parking ratios. While local experience may justify current regulations, RPA estimates that 1 space for every 300–400 sf of commercial floor area and 1 space per dwelling unit might be appropriate for this area. In addition, and in order to meet the new parking standards, bulk waivers to allow for the construction of parking decks should be considered as well.

Table 2 lays out the specific buildout conditions for each assembly site development under RPA’s assumptions.
Table 2: Build Out Potential for Assembly Sites as per RPA Study

<table>
<thead>
<tr>
<th>Assembly Sites</th>
<th>Lot Area in SF</th>
<th>Approximate FAR</th>
<th>Approximate Built Area</th>
<th>Dwelling Units</th>
<th>Residential SF</th>
<th>Retail SF</th>
<th>Office SF</th>
<th>Community Facility SF</th>
<th>Parking Deck</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B</td>
<td>67,483</td>
<td>0.8</td>
<td>56,800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>56,800</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>38,564</td>
<td>0.1</td>
<td>4,796</td>
<td>0</td>
<td>0</td>
<td>4796</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>55,350</td>
<td>0.9</td>
<td>51,000</td>
<td>34</td>
<td>34,000</td>
<td>8,500</td>
<td>8,500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>92,221</td>
<td>0.1</td>
<td>12,700</td>
<td>0</td>
<td>0</td>
<td>6,350</td>
<td>6,350</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>36,905</td>
<td>0.1</td>
<td>3,778</td>
<td>0</td>
<td>0</td>
<td>3,778</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>105,494</td>
<td>1.5</td>
<td>159,860</td>
<td>66</td>
<td>65,860</td>
<td>16,400</td>
<td>33,600</td>
<td>0</td>
<td>44,000</td>
</tr>
<tr>
<td>H</td>
<td>98,334</td>
<td>0.6</td>
<td>59,053</td>
<td>28</td>
<td>28,400</td>
<td>30,653</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>101,654</td>
<td>0.9</td>
<td>92,800</td>
<td>81</td>
<td>81,000</td>
<td>11,800</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>134,051</td>
<td>0.8</td>
<td>105,400</td>
<td>86</td>
<td>86,300</td>
<td>6,500</td>
<td>12,600</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>166,815</td>
<td>1.1</td>
<td>185,000</td>
<td>83</td>
<td>83,000</td>
<td>27,000</td>
<td>9,000</td>
<td>0</td>
<td>66,000</td>
</tr>
<tr>
<td>L</td>
<td>120,157</td>
<td>0.8</td>
<td>98,400</td>
<td>36</td>
<td>35,600</td>
<td>17,800</td>
<td>45,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>157,443</td>
<td>0.8</td>
<td>125,400</td>
<td>67</td>
<td>105,900</td>
<td>19,500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>62,837</td>
<td>0.4</td>
<td>25,000</td>
<td>0</td>
<td>0</td>
<td>25,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>163,062</td>
<td>0.6</td>
<td>99,200</td>
<td>99</td>
<td>99,200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Potential Build Out of Assembly Sites
Sewer assessment and review

As mentioned in the previous sections, the concept of bringing sewers down Main Street has been studied. This is an essential infrastructure upgrade without which no significant amount of redevelopment can take place. However, the projected service capacity for achieving the desirable mixed use developments for Main Street slightly exceeds the levels assessed by the sewer study conducted in 2015.

The study from 2015 assessed the option of accessing Ronkonkoma’s Hub Pump Station via a force main that would transfer wastewater to the County’s regional wastewater treatment plan Bergen Point. The study concluded that there are no technical issues that would preclude the installation of the sewer infrastructure. However, the zoning assumptions, used as a baseline to inform sewer capacity, would significantly limit mixed residential uses and would likely fall short of the intention for a vibrant downtown experience along the corridor.

The sewer study used a build-out scenario in which most parcels along the corridor are rezoned to Business 6 District (J6 – Town of Brookhaven) and the Business District (BD – Town of Islip). The study did not provide details as to which lots where most likely to be assembled and developed. Instead, it determined that about half of the study area had development potential, estimated the build-out at about 915,000 square feet of floor area, and assumed a predominant use for retail and office, leaving just 10% for residential.

Using building footprints and number of floors from the model of the vision, RPA estimates that about 350,000 square feet of built area currently exist at parcels adjacent to the assembly sites and at Seneca Middle School, neither of which are assumed to be redeveloped. Based on the previous it can be estimated the total build-out (developments and buildings to remain) assumed by the sewer study would result in a total of 1.3 million square feet. Chart 3 shows the comparative analysis of total build-out potentials for each scenario.

Just as important as the total projected build out are the assumptions made for the land use programming mix. As mentioned earlier, a robust residential component will be necessary to achieve the necessary density associated with a vibrant downtown. Projections based on BD and J6 zoning used by the sewer study assume a highly predominant retail component, surpassing 70% of the total build area. Under the same scenario residential uses would only add up to 7% of the total build area. Charts 4 and 5 compare the programming mix used in the sewer study with RPA’s projections for the study area.

Chart 4: Total Floor Area by Use from Study Area as per Sewer Study

Chart 5: Total Floor Area by Use from Study Area as per RPA Study

RPA added the total build-out area from the Sewering Feasibility Study with the built area that is assumed to remain, resulting in a total of 1.3 million square feet. Sewer Study conducted by Cameron Engineering & Associates, LLP.
Analysis of existing zoning and possible needed changes

The BD business zoning district from the Town of Islip and the J6 zoning district from the Town of Brookhaven, used as a baseline to inform sewer capacity, would significantly limit mixed residential uses and would likely not result in a vibrant downtown experience along the corridor. If the vision that resulted from RPA’s design exercise is to be promoted, zoning changes beyond the BD and J6 districts need to be considered.

By working with the planning departments of both the Towns of Islip and Brookhaven, a special district should be studied that takes into account the following variables:

Residential
Both BD and J6 zoning districts require special permits from the planning board for developing single or two family dwellings. Even when these are granted, developments would be capped to just 0.25 FAR. In addition, requirements for lot coverage and open space (front, back and side yards) would also considerably restrain development. A different type of zoning should encourage multi-family buildings and allow these uses as-of-right or at a minimum allow lot coverage requirements waived by special permit.

Mixed Uses
While the maximum FAR for the zoning districts is 0.6, mixed use buildings are required to have 30% of the gross floor area dedicated to commercial uses, an excessive amount for a mixed use district. In J6 districts, third floors with residential uses are only allowed by Town Board special permits. The commercial component in mixed use buildings should be reduced to approximately 15% of the total floor area. Moreover, additional residential floors should be allowed as-of-right or allowed on a bonus basis.

Requirements for Bulk and Height
Requirements for height and lot coverage would also limit building configurations. Under both zoning districts, the maximum height would be set to 35 feet or 2.5 floors. A minimal increase that allows up to 4 stories or 45 feet as-of-right would enable more interesting building configurations. A special permit could allow for an additional floor or ten more feet.

Below is an example of using the combination of mixed use districts modifications and bulk and height can be used to create more interesting buildings.

Parking
Current parking requirements are also very restrictive. Parking requirements are not linked to a specific zoning district. Instead, both towns define the number of required parking spaces depending on use. Parking requirements for typical commercial uses require 1 parking space for every 150-200 gross floor area. Apartment houses or garden apartments in Holbrook require 1.75 parking spaces per dwelling unit in Islip, while Brookhaven requires 2 spaces per dwelling unit, in a world where average household size has declined by 30% between 1948 and the present, from 3.67 to 2.53 people per household (2.50 per household for renter occupied housing nationally, and 2.14 for renter occupied housing in Holbrook, NY). In addition, the single-person household has increased dramatically on Long Island. In 1970, couples with children made up 50% of all households on Long Island. In 1970, couples with children made up 50% of all households on Long Island. In 2013, they constituted only 26% of households. Over the same time period, single households grew from 9% to 21%.⁶

When applying the above parking criterion to the potential assemblage sites studied by RPA, almost 5,000 parking spaces would be required under the existing zoning, 9,000 parking spaces.

⁶ http://www.longislandindex.org/data_posts/long-islands-changing-population
spaces would be required under the zoning assumptions used in the sewer study. Under the sewer study assumptions, that would absorb nearly 30 acres of land, or over 22 football fields.

Two approaches can be followed to address this issue. New zoning rules must significantly relax parking ratios to an order of magnitude of 1 space for every 300–400 sf of commercial and 1 space per dwelling unit. In addition, and in order to meet the new parking standards, bulk waivers must be granted to allow for the construction of parking decks.

Bonuses
Zoning bonuses should also be considered. For example, zoning could allow a fifth floor through a bonus, reached only when the developer commits to a certain amount of public benefit such as: affordable housing, trees, accommodating public transit infrastructure, certain linear feet of sidewalk, or other improvements.

Concept-level design guidelines

One of the challenges to retrofitting commercial strips like this is that comprehensive and coordinated redevelopment needs to engage multiple landowners.

The transformation of the corridor can be thought of in terms of two related parts. The first part is the improvements that can be made within the public right-of-way or site plan improvements that can happen independent of redevelopment. Relatively inexpensive improvements are made to address the problems listed above and to create a more pedestrian-oriented environment:

- Make sidewalks continuous and wide enough for additional pedestrian circulation
- Provide uniform streetscape design standards: sidewalk widths and materials, uniform landscaping
- Promote cross access to minimize driveways
- Reduce driveway widths
- Reduce lane widths to eleven feet wherever possible
- Create clear and safe pathways from the corridor to building entrances. Make clearly marked pedestrian pathways across parking lots and internal roads
- Clearly mark driveway crossings
- Make intersections with cross streets more pedestrian friendly: reduce turning radius, provide clearly marked crosswalks for each point of crossing and installing lighting
- Create well-landscaped buffers where commercial developments back up to residential areas or open space, including elements such as: architectural walls, trellises, and extended medians with shrubs and trees.

Design guidelines can shape developments and the way they relate to the road and to each other. If additional height and bulk is allowed, this needs to be moderated by design guidelines that would ensure the context-sensitive transition to the surrounding single-family neighborhoods. Design guidelines could include the following:

- Require connections from the sidewalks to the front doors of buildings that are not along the sidewalks.
- Mandate “build-to lines” that require buildings to be in a consistent relationship to adjacent buildings and close to the frontage.
- Require minimum amounts of transparency for buildings along the sidewalk.
- Disallow parking between the street and the building frontages, keeping parking on the sides and behind buildings.
- Require height and setback transitions where new developments abut residential neighborhoods.
- Require cross-access between parking lots to minimize friction on the road.
- Where appropriate, consider berms or other changes in topography to provide additional screening, sound mitigation and landscape design interest.
Commercial Corridor Redevelopment Phase I
RPA

- Provide cross-access
- Landscape buffer at neighborhood edge
- Make curb cuts narrower
- Pedestrian improvements at intersecting road
 - Crosswalks
 - Tighten radii
- Create continuous sidewalks
- Eliminate / consolidate driveways
- Develop sidewalks to storefronts

Commercial Corridor Redevelopment Phase II
RPA

- Street trees along sidewalk
- New development to "build to" set-back line
- Reclaim asphalt for green zone along sidewalk
Implementation Resources: County, State and Federal Resources

Community Development and Housing Funding

New York State Programs

Consolidated Funding Application (CFA)
The CFA has been designed to give economic development project applicants expedited and streamlined access to a combined pool of grant funds and tax credits from dozens of existing programs. The CFA is a modern and easy-to-use online application that allows businesses and other entities to apply for multiple agency funding sources through a single, web-based application. It is the primary portal for businesses to access state agency resources, including resources for community development, direct assistance to business, waterfront revitalization, energy and environmental improvements, government efficiency, sustainability, workforce development, and low-cost financing. Funding is currently available for Community Development through several programs.

► New York Main Street Program. NYMS provides resources to invest in projects that provide economic development and housing opportunities in downtown, mixed-use commercial districts. A primary goal of the program is to stimulate reinvestment and leverage additional funds to establish and sustain downtown and neighborhood revitalization efforts.

► Community Development Block Grant Program. NYS CDBG funds provide small communities and counties in New York State with a great opportunity to undertake activities that focus on community development needs such as creating or expanding job opportunities, providing safe affordable housing, and/or addressing local public infrastructure and public facilities issues.

NYS CDBG applicants must address and resolve a specific community or economic development need within one of the following areas:
- Public Infrastructure
- Public Facilities
- Microenterprise
- Community Planning

Funding is also available for Arts & Culture Initiatives, Environmental Improvements, Energy, Education/Workforce Development, Sustainability Planning & Implementation, Waterfront Revitalization, Environmental Protection, Recreational Trails, and other community improvement projects.

Empire State Development Grants
Capital grant funding from the Regional Council Capital Fund is available through the State’s Regional Economic Development Council Initiative, which helps drive regional and local economic development across New York State in cooperation with 10 Regional Economic Development Councils (“Regional Councils”).

Capital grant funding is available for capital-based economic development projects intended to create or retain jobs; prevent, reduce or eliminate unemployment and underemployment; and/or increase business or economic activity in a community or Region.

New York State Historic Structure Rehabilitation Tax Credit
This tax credit applies to properties which are approved for the federal rehabilitation tax credit in eligible census tracts. Owners can receive an additional 20% of the qualified rehabilitation expenditures up to $5,000,000. In order to qualify, the placed-in-service date must be after January 1, 2010. There is no application form. After Part 3 of the federal application is approved by the National Park Service and, the state fees are paid, The New York State Office of Parks, Recreation, and Historic Preservation will issue a certification allowing owners to take the state credit. (https://parks.ny.gov/shpo/tax-credit-programs/)

Suffolk County Programs

Suffolk County Downtown Revitalization Grants
Suffolk County Downtown Revitalization Grants help towns, villages and community organizations expand on their efforts to enhance their downtowns, attract visitors and shoppers into the area, and thereby stimulate economic activity in these important centers. Since its inception the Downtown Revitalization Grant Program has funded projects such as street lights, sidewalks, public restrooms, off street parking lots and renovating alleyways which lead from parking areas to the main street. Eligible applicants must be local business or community groups partnering with a local municipality (town or village).

Jumpstart Suffolk
Jumpstart Suffolk program is a comprehensive economic development plan to encourage, foster and enhance the planning and development of regionally significant developments in and around Suffolk’s downtowns. It is sponsored by Suffolk County’s Department of Economic Development and Planning and is intended to promote mixed-used residential and commercial developments located around transit nodes.
New York State Programs

Consolidated Local Street and Highway Improvement Program (CHIPS)

CHIPS provides State funds to municipalities to support the construction and repair of highways, bridges, highway-railroad crossings, and other facilities that are not on the State highway system.

The authorization for the CHIPS Program is contained in Section 10-c of the State Highway Law. Funds are apportioned to municipalities annually by the New York State Department of Transportation (NYSDOT) pursuant to a formula specified in this section of the Law.

Upon approval of the State Budget, NYSDOT determines each municipality's final CHIPS Capital apportionment for the new State fiscal year and notifies them of the available amount via the letter for the scheduled June payment and a posting to the Capital Apportionment Balances link on the CHIPS website.

PAVE-NY

The recently adopted five-year State Transportation Plan (2015/16 – 2019/20) provides $100 million per year through the PAVE NY program to assist municipalities with rehabilitation and reconstruction of local highways and roads. Funds are apportioned by NYSDOT according to the percentage of funds each municipality received under the SFY 2016-17 CHIPS Program.

PAVE-NY follows all the programmatic and reimbursement requirements of CHIPS, with one notable exception — eligible project activities are limited to Highway Resurfacing and Highway Reconstruction. PAVE-NY eligible activities are eligible for reimbursement as of April 1, 2016. A CP75 form has been created to submit reimbursements under the PAVE-NY Program.

Note: These two NYS funding options are not grant programs which are applied for, however, their funding could still be deployed strategically in support of downtown redevelopment and revitalization.

New York Metropolitan Area (NYMTC) Programs

Transportation Alternatives Program

The Transportation Alternatives Program (TAP) encompasses most of the activities previously funded under the Transportation Enhancement Program (TEP), Recreational Trails Program (RTP), and Safe Routes to School (SRTS) Program.

TAP funding is available to projects which improve the quality of life of the community, as a whole as well as providing economic and social benefits. TAP funds can be used for a variety of alternative transportation projects, including the construction of pedestrian and bicycle facilities; conversion of abandoned railroad corridors for trail use; and infrastructure-related projects to provide access for and improve the safety of children, older adults and individuals with disabilities.

CMAQ

The Congestion Mitigation and Air Quality Improvement (CMAQ) Program funds surface transportation improvements or transportation programs that improve air quality and mitigate traffic congestion.

Section 5310 – Enhanced Mobility for Seniors and Individuals with Disabilities

The Section 5310 Program is intended to enhance mobility for seniors and persons with disabilities.

It provides funds for transportation projects and/or programs that serve the special needs of transit-dependent populations beyond traditional public transportation services and complementary paratransit services under the Americans with Disabilities Act (ADA).
Funding sources for road improvements in New York Metro Area: Federal Programs for Transportation & Community Development

The United States Department of Transportation (USDOT), United States Department of Housing and Urban Development (HUD), the United States Environmental Protection Agency (EPA), the United States Department of Commerce’s Economic Development Administration (EDA), as well as other agencies and several interagency initiatives all provide implementation funding for downtown revitalization, transportation and infrastructure upgrades, and other community improvements. While some programs are conducted through the States, other provide direct funding to municipalities or local non-profits. Some of these are:

EPA’s Smart Growth Program
Consisting of both technical assistance grants and an implementation assistance program, EPA’s Smart Growth program encourages incorporating smart growth techniques into future development, and provides assistance to implement solutions on complex or cutting-edge issues, such as stormwater management, code revision, transit-oriented development, affordable housing, infill development, corridor planning, green building, and climate change. Applicants can submit proposals under four categories: community resilience to disasters, job creation, the role of manufactured homes in sustainable neighborhoods, or medical and social service facilities siting.

Better Utilizing Investments to Leverage Development (BUILD) Funding
The Better Utilizing Investments to Leverage Development, or BUILD Transportation Discretionary Grant program, provides a unique opportunity for USDOT to invest in road, rail, transit and port projects that promise to achieve national objectives. Congress has dedicated nearly $7.1 billion for ten rounds of National Infrastructure Investments to fund projects that have a significant local or regional impact.

The eligibility requirements of BUILD allow project sponsors at the State and local levels to obtain funding for multi-modal, multi-jurisdictional projects that are more difficult to support through traditional USDOT programs. BUILD can provide capital funding directly to any public entity, including municipalities, counties, or others. (www.transportation.gov/BUILD-grants/apply)

Federal Historic Structure Investment Tax Credit
Owners of income producing real properties listed on the National Register of Historic Places may be eligible for a 20% federal income tax credit for the substantial rehabilitation of historic properties. The final dollar amount is based on the cost of the rehabilitation; in effect, 20% of the rehab costs will be borne by the federal government. The work performed (both interior and exterior) must meet the Secretary of the Interior’s Standards for Rehabilitation and be approved by the National Park Service. (https://parks.ny.gov/shpo/tax-credit-programs/)
Appendix
Corridor Design Guidelines

Summary diagram for typical small infill site (10,000 sf lot or less)

Maximum height 45'
Required setback at 3rd story or 32'

Site plan for typical small infill site (10,000sf site or less)

Site plan for typical small infill site showing alternative access to parking.
Summary diagram for typical intermediate infill site (between 10,000 sf and 20,000 sf.).

Frontage with two structures

Summary diagram for typical intermediate infill site with long frontage.

Summary diagram for typical intermediate infill site with narrow frontage and deep lot.
Site plan for intermediate infill site with long frontage and two separate structures.

Site plan for intermediate infill site with surface parking lot partially beneath building.

Photo of infill building with pedestrian orientation to the street and surface parking that is partially beneath the building and with access from the side street. Accommodation of surface parking lot behind, and partially beneath, a building that maintains a strong pedestrian orientation. Access to the lot is from the side street.
Site plan for intermediate infill site with integrated parking structure.

Site plan for intermediate infill site with narrow frontage and deep lot showing alternative access to parking.

These street-oriented mixed-use buildings obscure the parking structure behind.
Parking and automobile access should be located away from corners.

Strategies for articulating the corner of a building with two frontages.

The massing of a building should reflect the importance of a corner site and relate to both street frontages.

Buildings on corner lots should be oriented to the corner and public street fronts. Parking and automobile access should be located away from corners.
Surface parking screened by an architectural wall and trellis.

Surface parking screened by hedges and trees

Not acceptable: large lot between the street and the storefront

Acceptable: Limited storefront parking lot

Preferred: Parking behind retail frontage

Acceptable and unacceptable parking configuration.

A low hedge and shade trees enhance the public sidewalk and parking lot edge

A decorative wall, fencing and shade trees screen views into the parking lot
Existing Parking Lot

Manage Stormwater with Green Infrastructure

Greening Parking Lot

Expansion into Parking Lot

Parking lot retrofit
Strategies for breaking down the apparent scale of contextual development.
Strategies for articulating the massing and façade of a building to express a base, middle and top.

Photo of contextual elevations which express a base, middle and top.
Extra Wide Sidewalk

Street Trees in Sidewalk Cut-Outs

Sitting Space

Weather Protection (Rain or Sun)

Display Windows

Main Entry

Bus Stop Seating or Shelters (where applicable)

Pedestrian Scale Lighting

- furnishing zone
- pedestrian through zone (width may vary)
- building and/or outdoor seating and plaza zone

8-ft sidewalk barely allows 2-way pedestrian and a 3-ft street furniture area.

10-ft sidewalk gives more breathing room.

12-ft sidewalk adds opportunities for outdoor dining, displays, planters, and window shopping.

15-ft sidewalk adds room for a transit shelter and high levels of pedestrian activity.
Unacceptable: Site plan of typical deep-lot residential development with no orientation to the street.

Preferred: Site plan of preferred configuration for new mixed-use residential development enabled by VCD zoning. Except for the narrow driveway, the building frontage maintains the definition of the street.

Preferred: Site plan showing the preferred configuration for contextual infill commercial development with a pedestrian-scaled façade on the street and parking behind.

Unacceptable: Site plan for a typical unacceptable commercial development that has no relationship to the sidewalk or street.
Regional Plan Association is America’s oldest and most distinguished independent urban research and advocacy group. RPA works to improve the economic competitiveness, infrastructure, sustainability and quality of life of the New York-New Jersey-Connecticut metropolitan region. A cornerstone of our work is the development of long-range plans and policies to guide the growth of the region. Through our America 2050 program, RPA also provides leadership in the Northeast and across the U.S. on a broad range of transportation and economic-development issues. For more information visit, www.rpa.org.

Board of Directors

Chairman
Elliot G. Sander*

President
Thomas K. Wright*

Vice Chair and Co-Chair, New York Committee
Robert L. Billingsley*

Vice Chair and Co-Chair, Connecticut Committee
Michael J. Critelli

Vice Chair and Co-Chair, New Jersey Committee
Christopher J. Daggett*

Vice Chair
Douglas Durst

Vice Chair and Co-Chair, New Jersey Committee
The Honorable James J. Florio

Vice Chair and Co-Chair, New York Committee
Lynne Sagalyn

Vice Chair and Chair of the Nominating Committee
Denise M. Richardson*

Treasurer and Co-Chair, Long Island Committee
Matthew S. Kissner*

Chairman Emeritus and Counsel
Peter W. Herman*

Secretary of the Corporation
Rossana Ivanova

Rohit T. Aggarwala*
David Armour*
Hilary M. Ballon
Joseph G. Barile
Marcia Bateson*
Stephen R. Beckwith
Edward J. Blakely
James J. Brinkerhoff
Tonio Burgos
Michael J. Cacace
Vishaan Chakrabarti
Manju Chandrasekhar
Frank S. Cicero*
Louis Coletti
Kevin S. Corbett*
Anthony R. Coscia
Lee Davis
Eva Lauren Durst
Thomas P. Fehn
Fernando Ferrer
Luke Eberly Fichthorn IV
Barbara Joelson Fife*
James E. Fitzgerald
Paul E. Francis*
Emil H. Frankel
Doreen M. Frasca
Timur F. Galen*
Jonathan L. Goldstick
Jerome W. Gottesman*
Toni L. Griffin
Maxine Griffith
John S. Griswold Jr.
Richard J. Haray
Susanne Heidelberger
Dylan Hixon*
David Huntington
Adam Isles
Kenneth T. Jackson
Marc Joseph
Anaita Kasad
Marcia V. Keizs

Gregory A. Kelly
Robert Knapp
Mitchell A. Korkey
John Z. Kukral
Trent Letcho
Christopher D. Levendos
Charles J. Maikish*
Mark Marucci
Debra A. McDowell
Peter J. Miscoch
J. Andrew Murphy
Jan Nicholson
Joseph P. Oates
Richard L. Ornst
Patricia Ornst
Sotiris A. Pagdalis
Kevin J. Pearson*
Milton Puryear
Richard Ravitch
Gregg Rechler
Michael J. Regan
Marc Ricks
Gary D. Rose
Janette Sadik-Khan
Thomas Santiago
Samuel I. Schwartz
Peggy Shepard
H. Claude Shostal
James Simpson
Susan L. Solomon
Monica Slater Stokes
Robert Stromstes
Michael J. Sweeney
Luther Tai
Marilyn J. Taylor*
Sharon C. Taylor
Richard T. Thigpen
Karen E. Wagner
Robert D. Yaro
John Zuccotti*

*Member of Executive Committee