Traffic congestion in the tri-state New York-New Jersey-Connecticut metropolitan Region continues to mount, placing a heavy economic and quality of life burden on the City and the Region. This level of congestion is now hindering the efficient flow of productivity and added delivery times and costs for businesses, as well as stress and frustration for residents. At this point, it is neither possible nor desired to expand public transport or replace congestion with other means to reduce traffic congestion or manage demand for motor vehicle use. The concept of charging for the use of the road network as a means to reduce traffic volumes and speed travel is fast gaining adherents and is worth considering in New York. Other major cities have either installed charges for entering the cores of their regions or are actively studying or even implementing the concept. In New York in size and traffic congestion, successfully implemented a program of motor vehicle charges to enter its CBD during daytime hours. The United States and around the world, have successfully instituted charges for road use, either on clogged roads or to enter core areas, by charging either a flat rate or using variable pricing to relieve peak period traffic. These areas have made use of technological advances to allow for cash-free, non-stop fee collection systems. Places as diverse as Singapore, Melbourne, Trondheim (Norway), Tokyo, Orange County (California), and San Diego have established these programs. In the New York Region, three of the area’s four largest toll agencies have put in place some form of variable pricing — the Port Authority at its three Hudson River crossings, the New Jersey Turnpike Authority throughout its entire system, and the New York State Thruway Authority at the Tappan Zee Bridge (for trucks only). Collecting money has never been easier. All of these New York-New Jersey programs have been made possible by the electronic toll collection system known as E-ZPass. Its use is widespread, allowing the majority of vehicles to be charged with little imposition to drivers or toll collectors. At 10 locations, high-speed, barrier-less toll collection has been implemented as a complement to E-ZPass, allowing cashless collection without stopping. This allows for the collection of tolls at a fast pace, adding capacity while not slowing traffic. Similar techniques to collect charges on streets have been proven to work elsewhere, most notably in London. These developments raise the issue of how a congestion charging system in New York might work. Subsequently, RPA, at the request of the Eno Transportation Foundation, has examined the issue and published the report titled “Practical Alternatives for Congestion Pricing in Manhattan,” a summary of which is presented in this paper. The simulation models used are run on a PC; the report includes an ANNEX for those interested in the technical details. The model covers the entire New York Metropolitan Region, and more specifically, the City of New York with a very detailed geographic representation of the CBD and the 675 sq. mi. surrounding area. The CBD is defined as the 8.5 sq. mi. Manhattan south of 60th Street, and the analysis is limited to this area. The study compared different combinations of charging scenarios and described their potential impacts on traffic volume, travel time, and efficiency of the road network. The purpose of this new report is to summarize the key findings and to provide a brief overview of the key elements of the simulations and the results. This report is intended to be a starting point for discussions about the potential benefits and drawbacks of congestion pricing in New York and to provide a basis for further study and analysis. The report also wishes to thank the J. M. Kaplan Fund, which supported much of the research on which the report is based.
CHAIRMAN
Peter W. Herman

VICE CHAIRMAN AND
CO-CHAIRMAN, NEW JERSEY
Christopher J. Daggett

VICE CHAIRMAN AND
CO-CHAIRMAN, CONNECTICUT
John S. Griswold, Jr.

VICE CHAIRMAN AND
CO-CHAIRMAN, LONG ISLAND
David J. Manning

PRESIDENT
Robert D. Yaro

TREASURER
Brendan J. Dugan

Robert F. Arning
Charles A. Bauer
Laurie Beckelman
Stephen R. Beckwith
Edward J. Blakely
J. Max Bond, Jr.
Roscoe C. Brown, Jr.
Richard J. Carbone
Edward T. Cloonan
Tina Cohoe
Jill M. Considine
Michael R. Cowan
Paul A. Crotty
Alfred A. DelliBovi
Nancy R. Douzinas
Barbara J. Fife
Paul J. Ganci
Marilyn G. Gelber
Michael Golden
Arthur E. Imperatore, Jr.
Kenneth T. Jackson
Ira H. Jolles
Richard A. Kahan
Richard D. Kaplan
Shirley Strum Kenny
Susan S. Lederman
Richard C. Leone
Richard W. Lloyd
Charles J. Maikish
Joseph J. Maraziti, Jr.
John L. McGoldrick
Peter H. Nachtwey
Jan Nicholson
Richard Ravitch
Gregg Rechler
Robert N. Rich
Mark F. Rockefeller
Elizabeth Barlow Rogers
Janette Sadik-Khan
Stevan A. Sandberg
H. Claude Shostal
Susan L. Solomon
Jerry I. Speyer
Luther Tai
Karen E. Wagner
Mary Ann Werner
William M. Yaro
This is a summary of a report prepared by Regional Plan Association at the request of the Eno Transportation Foundation for presentation at a conference to discuss congestion pricing in New York on November 4, 2003. The report establishes the case for considering a pricing system to manage traffic in Manhattan’s Central Business District (CBD). It outlines four pricing scenarios showing a range of options for pricing some or all of the 19 entry points to the CBD. These scenarios are tested; all provide significant traffic relief and revenue gain. The report highlights the distinctions among the scenarios and uses them as a context to raise many of the issues — from opposition to implementation — that New York would face were it to proceed with a pricing plan.

INTRODUCTION: WHY NOW?

Traffic congestion in the tri-state New York-New Jersey-Connecticut metropolitan Region continues to mount, placing a heavy economic and quality of life burden on the City and the Region. This level of congestion results in significant loss of productivity and added delivery times and costs for businesses, as well as stress and frustration for residents. At this point, it is neither possible nor desired to expand road capacity, requiring consideration of other means to reduce traffic congestion or manage demand for motor vehicle use.

The concept of charging for the use of the road network as a means to reduce traffic volumes and speed travel is fast gaining adherents and is worth considering in New York. Other major cities have either installed charges for entering the cores of their regions or are actively studying how to do so. Early in 2003, London, which is very similar to New York in size and traffic congestion, successfully implemented a program of motor vehicle charges to enter its CBD during daytime hours. The charge, paid for in advance through a variety of cashless media, is 5 pounds (about $8 US). The charge is enforced through cameras at the 174 entry points, with the photographs of license plates matched against the pre-paid records. There are heavy fines for non-payment. As a result, traffic volumes are down by 16 percent and motor vehicle travel times have been substantially reduced.

Other cities, both in the United States and around the world, have successfully instituted charges for road use, either on clogged roads or to enter core areas, by charging either a flat rate or using variable pricing to relieve peak period traffic. These areas have made use of technological advances to allow for cash-free, non-stop fee collection systems. Places as diverse as Singapore, Melbourne, Trondheim (Norway), Toronto, Orange County (California), and San Diego have established these programs.

In the New York Region, three of the area’s four largest toll agencies have put in place some form of variable pricing — the Port Authority at its three Hudson River crossings, the New Jersey Turnpike Authority throughout its entire system, and the New York State Thruway Authority at the Tappan Zee Bridge (for trucks only).

Collecting money has never been easier. All of these New York-New Jersey programs have been made possible by the electronic toll collection system known as E-ZPass. Its use is widespread, allowing the majority of vehicles to be charged with little imposition to drivers or toll collectors. At 10 locations, high-speed, barrier-less toll collection has been implemented as a complement to E-ZPass, allowing cashless collection without stopping. This allows for the collection of tolls at a fast pace, adding capacity while not slowing traffic. Similar techniques to collect charges on streets have been proven to work elsewhere, most notably in London.

These developments raise the issue of how a congestion charging...
The economic loss argument centers on the concern that a) individuals and businesses will suffer a loss of net income or profit, and b) fewer trips will be made, thereby diminishing economic activity. The counter arguments center on the value of time savings from reduced traffic congestion — time savings significant enough to outweigh any direct or indirect costs resulting from pricing. This is likely the case in London, where the vast majority of 500 businesses surveyed believe that congestion charging has had no discernible economic impact, 9 percent believe the impact has been positive, and an equally small number believe the impact has been negative. There has been a small drop in trip-making into the core of London, but this may be attributable to other causes.
The equity argument takes into account geography and income. Impacted city residents may argue that it is unfair to impose a charge to travel within some parts of the City, particularly for drivers who are poorer and especially if they have few alternatives to driving. However, evidence presented by two other researchers’ indicates that Brooklyn and Queens residents who drive to work earn more than non-drivers. Also, a very small proportion of residents of those two boroughs actually drive to work using the currently free East River bridges. Employer-supported programs can mitigate negative impacts on lower income workers employed at times when transit options are poor.

As for the ‘city streets’ argument, New York City incurs huge costs in maintaining the four free bridges and controlling traffic in the CBD, costs that have a substantial impact on the City’s budget. Should not the burden be placed on those who benefit from these facilities?

Any attempt to place charges of the kind suggested in the scenarios will be met with strong opposition. It will be up to the City and others supporting a pricing program to make a strong public case. A skeptical public will have to be convinced that traffic benefits would be worth the charges incurred, and that the revenues collected would be guaranteed to be used for an agreed-to public purpose, with a focus on transit options to attract former drivers. They would also need assurances that collection and enforcement systems are technically achievable and will not invade their privacy.

Other issues involve implementation. The collection techniques would have to monitor traffic either through ground-based photographic systems as in London, combined with the E-ZPass technology, or possibly using Geographic Positioning Systems (GPS) that would obviate the need for cameras at entry points. Pre-paid media to eliminate cash and barriers are assumed for all the scenarios and would have to be established. Fees would be enforced with photographs, followed by fines to those who did not pay, as is successfully done today by three of the four tolling authorities in the Region.

How should commercial vehicles be treated? To avoid placing a serious burden on commercial vehicles that may cross into the core more than once a day, the report suggests that they only be charged once a day 2 . The charge for taxis is another issue. A similar approach to commercial vehicles might be warranted, but a full or discounted charge for each inbound trip, or no charge at all as is done in London, should also be considered. This is an important issue requiring closer examination.

Will residential exemptions or discounts be provided for City residents or more narrowly to residents of the Manhattan CBD, or not at all? The report argues that any significant residential exemptions would defeat the purpose of the program. The report also raises the issue of exemptions for environmentally benign vehicles and the traffic impacts that charges may have just outside the CBD entry points.

Finally, implementation of these scenarios will require investment in upfront costs for collection and enforcement systems, investments in bus fleets and other bus service improvements. Existing toll authorities — the Port Authority and the MTA — may need to change the way they collect tolls. In three of the four scenarios, the MTA would be required to use cameras for enforcement rather than to rely on the rudimentary enforcement arms now used.

SCENARIO RESULTS

Table S-1 summarizes the key traffic impacts associated with the four scenarios. The two scenarios that place an added charge only on the East River bridges would reduce daily entries by about 5 percent, or over 40,000 vehicles. The drop in the peak period would be higher for the variable pricing scenario. The scenarios with the 60th Street charge would reduce daily entries by 9 percent and 13 percent respectively (73,000 and 105,000 vehicles), with scenario 4, the full variable time-of-day scenario, reducing peak use by 17 percent.

These drops in traffic would be significantly higher at the East River entry points. At the East River bridges traffic would drop by about 25 percent, likely leading to the virtual elimination of congestion at those crossings, relief on local streets at the approaches to these crossings in Brooklyn, Queens, and Manhattan, and less traffic on the Brooklyn-Queens Expressway. The impact of the added traffic shifting to the MTA tunnels would require careful study.

Traffic speeds and time savings resulting from these scenarios can be expected to be significant. The London experience indicates that a given percentage decrease in traffic volumes reduces congestion levels in percentage terms substantially more than the volume drop. One study that attempted to measure this relationship while looking at East River tolls supported this conclusion 3 . Applying these relationships to specific avenues and streets in Manhattan suggests travel time savings throughout the day on major streets.
to be from one to three minutes for every mile traveled, at the high end of that range for Scenarios 3 and 4. A two minute time savings for traveling a mile on a major road may seem modest, but it is equivalent in its time saving impact to upgrading a 20 mph highway to a 60 mph highway.

TABLE S-1
SUMMARY OF SCENARIO RESULTS

<table>
<thead>
<tr>
<th>SCENARIO RESULTS</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
<th>Scenario 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario Name</td>
<td>Toll East River Bridges like MTA</td>
<td>Variable Pricing on East River Bridges; MTA to Match</td>
<td>Like London</td>
<td>Full Variable Pricing</td>
</tr>
<tr>
<td>Total Daily Inbound Traffic</td>
<td>796,293</td>
<td>793,781</td>
<td>763,317</td>
<td>731,044</td>
</tr>
<tr>
<td>Change in Total Daily Inbound Traffic</td>
<td>-40,092</td>
<td>-42,604</td>
<td>-73,069</td>
<td>-105,341</td>
</tr>
<tr>
<td>Percent Change in Total Daily Inbound Traffic</td>
<td>-5%</td>
<td>-5%</td>
<td>-9%</td>
<td>-13%</td>
</tr>
<tr>
<td>Change in Number of Vehicles at AM Peak</td>
<td>-10,257</td>
<td>-15,613</td>
<td>-25,827</td>
<td>-35,000</td>
</tr>
<tr>
<td>Percent Change AM Peak</td>
<td>-5%</td>
<td>-8%</td>
<td>-13%</td>
<td>-17%</td>
</tr>
<tr>
<td>Change in Trucks at AM Peak</td>
<td>0</td>
<td>-466</td>
<td>-1,023</td>
<td>-1,052</td>
</tr>
<tr>
<td>Percent Change in Trucks at AM Peak</td>
<td>0%</td>
<td>-3%</td>
<td>-7%</td>
<td>-7%</td>
</tr>
<tr>
<td>Loss of Trip Making to the Core (Trip Shift)</td>
<td>-8,559</td>
<td>-9,083</td>
<td>-16,249</td>
<td>-25,810</td>
</tr>
<tr>
<td>Increase in Daily Transit Use (Mode Shift * 3)</td>
<td>94,599</td>
<td>100,473</td>
<td>170,458</td>
<td>270,839</td>
</tr>
</tbody>
</table>

The reduction in traffic volumes could also open the way for long considered amenity improvements such as closing Broadway and the Central Park Drives to motor vehicle traffic.

The scenario results indicate that there would be very small losses in the number of trips to the CBD — ranging from 13,000 to 39,000 people depending on the scenario. This translates into at most one percent fewer trips than the four million people entering the CBD.

Daily transit ridership would climb under all scenarios, with growth ranging from 95,000 to 270,000 trips daily to the system, representing gains in ridership of 15 to 4 percent.

The impact on truck traffic of the four scenarios would be felt in shifts in the time of day and routings. Five hundred fewer trucks would travel into the CBD in the peak period for Scenario 2 and over 1,000 for Scenarios 3 and 4. The routing of trucks would also shift significantly. Further research is needed to determine how many would shift to the MTA tunnels and how many would be rerouted via the Verrazano-Narrows Bridge.

All scenarios would generate substantial revenues — about $700 million for each of the first three scenarios, and more than double that for Scenario 4, which not only adds tolls at both the East River and 60th Street but has various levels of pricing in place 24 hours a day. The gain to the City would be somewhat less than these amounts, since some revenues in each case would accrue to the MTA as drivers switch to the tunnels. Nevertheless, the addition to the public coffers could capitalize anywhere from $7 billion to $19 billion of new construction, possibly for investment in transit facilities agreed to as part of a congestion pricing program.

AT THE EAST RIVER BRIDGES TRAFFIC WOULD DROP BY ABOUT 25 PERCENT, LIKELY LEADING TO THE VIRTUAL ELIMINATION OF CONGESTION AT THOSE CROSSINGS, RELIEF ON LOCAL STREETS AT THE APPROACHES TO THESE CROSSINGS IN BROOKLYN, QUEENS, AND MANHATTAN, AND LESS TRAFFIC ON THE BROOKLYN-QUEENS EXPRESSWAY.
While this report does not recommend which, if any, of these scenarios should be pursued, it does lay out the relative impacts and advantages of each. The distinctions need to be discussed and debated. This paper is intended to highlight these distinctions — between flat and variable pricing, daytime and 24-hour pricing, and pricing at some or all of the entry points to Manhattan’s CBD.

If congestion pricing is to be part of New York’s transportation future, there is much work to be done. The pricing concept is alien to most New Yorkers, while East River Bridge tolls (the only element common to all scenarios) has a long history of opposition. An educational campaign backed by research outlined in the report and responding to legitimate concerns will be needed to inform the public so the issue can be discussed in an enlightened fashion. Agreements on the various implementation issues, including an early implementation program of short-term transit and traffic improvements, would be needed. Beyond that, agreement on a program for long-term improvements in the transportation system must be reached with guarantees that the funds would be spent for their intended purpose.

The addition to the public coffers could capitalize anywhere from $7 billion to $19 billion of new construction, possibly for investment in transit facilities agreed to as part of a congestion pricing program.

2 Due to insufficient data, scenario results do not reflect a daily charge to commercial vehicles.

3 Charles Komanoff and Brian Ketcham, Bridge Tolls Advocacy project, *The Hours: Time Savings from Tolling the East River Bridges*, July 2003

4 A similar strategy was followed in London, notably with publishing the ROCOL report in 1998 and informed public discussion afterwards.
Regional Plan Association is an independent, not-for-profit regional planning organization that improves the quality of life and the economic competitiveness of the 31-county New York-New Jersey-Connecticut region through research, planning, and advocacy. For more than 80 years, RPA has been shaping transportation systems, protecting open spaces, and promoting better community design for the region's continued growth. We anticipate the challenges the region will face in the years to come, and we mobilize the region's civic, business, and government sectors to take action.